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The Costs of Ray-Tracing 

cost   ≈    height * width *  

                num primitives *  

                intersection cost *  

                size of recursive ray tree *  

                num shadow rays * 

                num supersamples * 

                num glossy rays *                

                num temporal samples * 
             num focal samples * 

                . . . 

Can we decrease that? 

"Rasterization is fast, but needs cleverness to support complex visual effects.  
Ray tracing supports complex visual effects, but needs cleverness to be fast." 
                                                                                            [David Luebke, Nvidia] 
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A Taxonomy of Acceleration Techniques 
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The Light Buffer 

§  Observation: when tracing shadow rays, it is sufficient to find any 
intersection with an opaque object 

§  Idea: for each light source, and for each direction, store a list of 
polygons lying in that direction when "looking" from the light 
source 

§  The data structure of the 
light buffer:  
the "direction cube" 

§  Construct either during 
preprocessing (by scan  
conversion onto the  
cube's sides), or construct 
"on demand" (i.e., insert 
occluder whenever found one) 
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Beam and Cone Tracing 

§  The general idea: try to accelerate by shooting several or "thick" rays at once 

§  Beam Tracing:  

§  Represent a "thick" ray by a pyramid 

§  At the surfaces of polygons, create new beams 

§  Cone Tracing:  

§  Approximate a thick ray by a cone 

§  Whenever necessary, split into smaller cones 

§  Problems: 

§  What is a good approximation? 

§  How to compute the intersection of beams/cones  
with polygons?  

§  Conclusion (at the time): too expensive!  
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Beam Tracing 
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Bounding Volumes (BVs) 

§  Basic idea: save costs by precomputations on the scene and 
filtering of the rays during run-time 

§  If the ray misses the BV, then it must also miss the enclosed object 

Bounding volume (BV) 

BV is hit,  

but object is not hit 

BV is hit, 
and object is hit 

"false 
 positive" 
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Regular 3D Grids 

§  Construction of the grid: 

§  Calculate BBox of the scene 

§  Choose a (suitable) grid resolution 
(nx, ny, nz) 

§  For each cell intersected by the 
ray: 

§  Is any of the objects intersecting 
the cell hit by the ray? 

§  Yes: return closest hit 

§  No: proceed to next cell 
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§  Precomputation: for each cell store all objects intersecting that 
cell in a list with that cell⟶ "insert objects in cells" 

§  Each cell has a list 
that contains 
pointers to objects 

§  How to insert objects:  
use bbox of objects 

§  Exact intersection 
tests are not worth  
the effort 

§  Note: most objects 
are inserted in many 
cells 
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Problems 

§  Objects could be referenced from many cells 

1. Consequence: a ray-object intersection need not be the closest 
one (see bottom right) 

§  Solution: disregard a hit, if the intersection point is outside the current 
cell 

2.  Consequence: we need a method to prevent the ray from being 
intersected with the same object several times (see bottom left) 
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The Mailbox Technique 

§  Solution: assign a mailbox with each object (e.g., just an integer 
instance variable), and generate a unique ray ID for each new ray 

§  For the ray ID: just increment a counter in the constructor of the ray 
class 

§  After each intersection test with an object, store the ray ID in the 
object's mailbox 

§  Before an intersection test, compare the ray ID with the ID stored 
in the object's mailbox: 

§  Both IDs are equal ⟶ the intersection point can be read out from the 
mailbox; 

§  IDs are not equal ⟶ perform new ray-object intersection test, and 
save the result in the mailbox (together with the ray ID) 
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Optimization of the Mailbox Technique 

§  Problems with the naive method: 

§ Writing the mailbox invalidates the cache 

§  You cannot test several rays in parallel 

§  Solution: store mailboxes seperately from geometry 

§ Maintain a small hash-table with each ray that stores object IDs 

-  Works, because only few objects are hit by a ray 

-  So, the hashtable can reside mostly in level 1 cache 

§  A simple hash function is sufficient 

§  Now, checking several rays in parallel is trivial 

§  Remark: this is another example of the old question, whether one 
should implement it using an 

 "Array of Structs" (AoS) or a "Struct of Arrays" (SoA)  
? 
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Traversal of a 3D Grid 

§  Simple idea: utilize 2 synchonized DDA's → 3D-DDA  

§  Just like in 2D, there is a "driving axis" 

§  In 3D, there are now two "passive axes" 

driving axis 

passive  
axis 1 

passive  
axis 2 
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Better Grid Traversal Algorithm 

§  Intersect ray with Bbox 
of the whole scene 

§  Warning: the ray's 
origin can be inside 
the Bbox! 

§  Determine first cell 

§  "Jump" with line 
parameter t  from one 
grid plane to the next 

Cell[i,j] 

tnextx

tnexty
tmin

tnextx
tnextx

tnexty

tmin



G. Zachmann 16 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS 

gy 
dty = gy / dy 

dtx = gx / dx 

gx 

dx 

dy 

d 

§  Is there a pattern in the cell transitions?  

§  Yes, all horizontal and all vertical transitions have the same 
distance (among themselves) 
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The Algorithm 

 

 

 

 

dtx 

dty 

Cell[i, j] 

tmin 

tnext_x 

tnext_y 

Cell[i+1, j] 

(dx, dy) 

if tnext_x < tnext_y : 

  i += 1 

  tmin = tnext_x 

  tnext_x += dtx 

else: 

  j += 1 

  tmin = tnext_y 

  tnext_y += dty 

if tnext_x < tnext_y : 

  i += sx 

  tmin = tnext_x 

  tnext_x += dtx 

else: 

  j += sy 

  tmin = tnext_y 

  tnext_y += dty 
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§  Lots of empty cells → represent grid by hash table 

Hash Function 

h(i,j,k) 

Hash-Table 

Storage 


