
Advanced Computer Graphics
Acceleration Data Structures
(for Raytracing et al.)

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 3 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Costs of Ray-Tracing

cost ≈ height * width *

 num primitives *

 intersection cost *

 size of recursive ray tree *

 num shadow rays *

 num supersamples *

 num glossy rays *

 num temporal samples *
 num focal samples *

 . . .

Can we decrease that?

"Rasterization is fast, but needs cleverness to support complex visual effects.
Ray tracing supports complex visual effects, but needs cleverness to be fast."
 [David Luebke, Nvidia]

G. Zachmann 4 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

A Taxonomy of Acceleration Techniques

G. Zachmann 5 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Light Buffer

§  Observation: when tracing shadow rays, it is sufficient to find any
intersection with an opaque object

§  Idea: for each light source, and for each direction, store a list of
polygons lying in that direction when "looking" from the light
source

§  The data structure of the
light buffer:
the "direction cube"

§  Construct either during
preprocessing (by scan
conversion onto the
cube's sides), or construct
"on demand" (i.e., insert
occluder whenever found one)

G. Zachmann 6 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Beam and Cone Tracing

§  The general idea: try to accelerate by shooting several or "thick" rays at once

§  Beam Tracing:

§  Represent a "thick" ray by a pyramid

§  At the surfaces of polygons, create new beams

§  Cone Tracing:

§  Approximate a thick ray by a cone

§  Whenever necessary, split into smaller cones

§  Problems:

§  What is a good approximation?

§  How to compute the intersection of beams/cones
with polygons?

§  Conclusion (at the time): too expensive!

G. Zachmann 7 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Beam Tracing

G. Zachmann 8 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Bounding Volumes (BVs)

§  Basic idea: save costs by precomputations on the scene and
filtering of the rays during run-time

§  If the ray misses the BV, then it must also miss the enclosed object

Bounding volume (BV)

BV is hit,

but object is not hit

BV is hit,
and object is hit

"false
 positive"

G. Zachmann 9 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Regular 3D Grids

§  Construction of the grid:

§  Calculate BBox of the scene

§  Choose a (suitable) grid resolution
(nx, ny, nz)

§  For each cell intersected by the
ray:

§  Is any of the objects intersecting
the cell hit by the ray?

§  Yes: return closest hit

§  No: proceed to next cell

G. Zachmann 10 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

§  Precomputation: for each cell store all objects intersecting that
cell in a list with that cell⟶ "insert objects in cells"

§  Each cell has a list
that contains
pointers to objects

§  How to insert objects:
use bbox of objects

§  Exact intersection
tests are not worth
the effort

§  Note: most objects
are inserted in many
cells

G. Zachmann 11 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Problems

§  Objects could be referenced from many cells

1. Consequence: a ray-object intersection need not be the closest
one (see bottom right)

§  Solution: disregard a hit, if the intersection point is outside the current
cell

2.  Consequence: we need a method to prevent the ray from being
intersected with the same object several times (see bottom left)

G. Zachmann 12 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Mailbox Technique

§  Solution: assign a mailbox with each object (e.g., just an integer
instance variable), and generate a unique ray ID for each new ray

§  For the ray ID: just increment a counter in the constructor of the ray
class

§  After each intersection test with an object, store the ray ID in the
object's mailbox

§  Before an intersection test, compare the ray ID with the ID stored
in the object's mailbox:

§  Both IDs are equal ⟶ the intersection point can be read out from the
mailbox;

§  IDs are not equal ⟶ perform new ray-object intersection test, and
save the result in the mailbox (together with the ray ID)

G. Zachmann 13 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Optimization of the Mailbox Technique

§  Problems with the naive method:

§ Writing the mailbox invalidates the cache

§  You cannot test several rays in parallel

§  Solution: store mailboxes seperately from geometry

§ Maintain a small hash-table with each ray that stores object IDs

-  Works, because only few objects are hit by a ray

-  So, the hashtable can reside mostly in level 1 cache

§  A simple hash function is sufficient

§  Now, checking several rays in parallel is trivial

§  Remark: this is another example of the old question, whether one
should implement it using an

 "Array of Structs" (AoS) or a "Struct of Arrays" (SoA)
?

G. Zachmann 14 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Traversal of a 3D Grid

§  Simple idea: utilize 2 synchonized DDA's → 3D-DDA

§  Just like in 2D, there is a "driving axis"

§  In 3D, there are now two "passive axes"

driving axis

passive
axis 1

passive
axis 2

G. Zachmann 15 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Better Grid Traversal Algorithm

§  Intersect ray with Bbox
of the whole scene

§  Warning: the ray's
origin can be inside
the Bbox!

§  Determine first cell

§  "Jump" with line
parameter t from one
grid plane to the next

Cell[i,j]

tnextx

tnexty
tmin

tnextx
tnextx

tnexty

tmin

G. Zachmann 16 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

gy
dty = gy / dy

dtx = gx / dx

gx

dx

dy

d

§  Is there a pattern in the cell transitions?

§  Yes, all horizontal and all vertical transitions have the same
distance (among themselves)

G. Zachmann 17 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Algorithm

dtx

dty

Cell[i, j]

tmin

tnext_x

tnext_y

Cell[i+1, j]

(dx, dy)

if tnext_x < tnext_y :

 i += 1

 tmin = tnext_x

 tnext_x += dtx

else:

 j += 1

 tmin = tnext_y

 tnext_y += dty

if tnext_x < tnext_y :

 i += sx

 tmin = tnext_x

 tnext_x += dtx

else:

 j += sy

 tmin = tnext_y

 tnext_y += dty

G. Zachmann 18 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

§  Lots of empty cells → represent grid by hash table

Hash Function

h(i,j,k)

Hash-Table

Storage

