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The Costs of Ray-Tracing
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cost height * width *

num primitives *

intersection cost *

size of recursive ray tree *

num shadow rays * Can we decrease that?
num supersamples *

num glossy rays *

num temporal samples *
num focal samples *

"Rasterization is fast, but needs cleverness to support complex visual effects.
Ray tracing supports complex visual effects, but needs cleverness to be fast."
[David Luebke, Nvidia]
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Y A Taxonomy of Acceleration Techniques

Ray Tracing Acceleration Techniques

Fast Fewer Generalized
Intersections Rays Rays
Faster Fewer
ray-object ray-object
intersection intersections
Examples: 1 Examples: 2 Examples: 3 Examples: 4
Object bounding Bounding volume Adaptive tree-depth Bean tracing
volumes hierarchies control
Cone tracing
Efficient intersectors Space subdivision Statistical
for parametric optimizations for anti- Pencil tracing
surfaces, fractals, etc. Directional techniques| |aliasing
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The Light Buffer

= Observation: when tracing shadow rays, it is sufficient to find any
intersection with an opaque object

= |dea: for each light source, and for each direction, store a list of
polygons lying in that direction when "looking" from the light

source
A Light buffer

= The data structure of the Sl digf

I |g ht b Uffe r /[/4,/ 2fz /,’I Cell that shadow feeler intersects

. . ight source > c Occluding polygons
the "direction cube" e | T -y
system ig
. . PouIes Shadow feeler
= Construct either during / . e
. Eye

preprocessing (by scan

conversion on to th € Cell record Current intersection point

cu be ! S SidES), or con StrU Ct Object label |Polygon label|  Depth

"on demand" (i.e., insert
occluder whenever found one)
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Y Beam and Cone Tracing
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The general idea: try to accelerate by shooting several or "thick" rays at once

Beam Tracing:
= Represent a "thick" ray by a pyramid
= At the surfaces of polygons, create new beams
= Cone Tracing:
= Approximate a thick ray by a cone
= Whenever necessary, split into smaller cones
= Problems:
= What is a good approximation?

= How to compute the intersection of beams/cones
with polygons?

= Conclusion (at the time): too expensive!
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Y  Beam Tracing

Initial beam
cross-section
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Clipped beam
cross-section

Qriginal beam
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W Bounding Volumes (BVs)

= Basic idea: save costs by precomputations on the scene and
filtering of the rays during run-time

Bounding volume (BV)

"false
positive"

"= |If the ray misses the BV, then it must also miss the enclosed object
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W Regular 3D Grids .

b

= Construction of the grid:
= Calculate BBox of the scene
= Choose a (suitable) grid resolution
(nx, Ny, Nz)
" For each cell intersected by the
ray:

= |s any of the objects intersecting
the cell hit by the ray?

= Yes: return closest hit

= No: proceed to next cell A

«
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= Precomputation: for each cell store all objects intersecting that

cell in a list with that cell— "insert objects in cells"

= Each cell has a list
that contains

pointers to objects

= How to insert objects:
use bbox of objects

= Exact intersection
tests are not worth
the effort ‘

= Note: most objects

are inserted in many
cells
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Problems

= Objects could be referenced from many cells

1. Consequence: a ray-object intersection need not be the closest
one (see bottom right)

= Solution: disregard a hit, if the intersection point is outside the current
cell

2. Consequence: we need a method to prevent the ray from being
intersected with the same object several times (see bottom left)

J
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U  The Mailbox Technique

= Solution: assign a mailbox with each object (e.qg., just an integer
instance variable), and generate a unique ray ID for each new ray

= For the ray ID: just increment a counter in the constructor of the ray
class

= After each intersection test with an object, store the ray ID in the
object's mailbox

= Before an intersection test, compare the ray ID with the ID stored
in the object's mailbox:

= Both IDs are equal — the intersection point can be read out from the
mailbox;

= |Ds are not equal — perform new ray-object intersection test, and
save the result in the mailbox (together with the ray ID)
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Optimization of the Mailbox Technique

= Problems with the naive method:
= Writing the mailbox invalidates the cache

= You cannot test several rays in parallel

= Solution: store mailboxes seperately from geometry

= Maintain a small hash-table with each ray that stores object IDs
- Works, because only few objects are hit by a ray

- So, the hashtable can reside mostly in level 1 cache
= A simple hash function is sufficient
= Now, checking several rays in parallel is trivial
= Remark: this is another example of the old question, whether one

should implement it using an
"Array of Structs” (AoS) or a "Struct of Arrays" (SoA)
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Traversal of a 3D Grid

= Simple idea: utilize 2 synchonized DDA's — 3D-DDA
= Just like in 2D, there is a "driving axis"

= In 3D, there are now two "passive axes"

y

passive L
axis 1 -

CroTTrre Ql/

— A — A=t =
- # — 7

passive A
axis 2 P z = f(x)

L — s - b — 4 —

P e

X

: grid cells identified by Bresenham's DDA

O : additional grid cells pierced by ray
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Better Grid Traversal Algorithm ¥

= |ntersect ray with Bbox
of the whole scene

= Warning: the ray's
origin can be inside /
the Bbox! /
= Determine first cell /

= "Jump" with line

Cell[i,j]

parameter t from one
xty

grid plane to the next
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"= |s there a pattern in the cell transitions?

" Yes, all horizontal and all vertical transitions have the same
distance (among themselves)

9x
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Y The Algorithm 4
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if tnext_x < tnext_y
i += sy
B & Eneen Cell[i, ] \ /Cell[i+1,j]
tnext x += dtx
else:
J += sy
tmin = 1:next_y
tnext_y += dty
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Storage

" Lots of empty cells — represent grid by hash table

()
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Hash Function

h(i,j,k)

Hash-Table
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